Budapest University of Technology and Economics

# TWO-DISC MACHINE

Made by: Attila Kovács



# Introduction:

The process of a Tribological system is complex, and it's hard to describe theoretically. **Experimental equipments** are usually used to understand frictional and wear behaviour, carrying capacity and lifetime in sliding and rolling applications.

## Using speciements with simple shape:

- Advantages: easy, economical and precise production of geometry (plain, cylinder, cone, ball, etc.)
- Contact relations: sliding, rolling, sliding&rolling (constant or changing direction in moving)
- Commonly used speciement-pairs: pin-on-disc, ball-on-disc, four ball, block-on-ring, pin-on-plate, two-disc, ...



# We use model tests to study:

- surface fatigue
- wear
- and to evaluate the coeff. of friction between specimens.

# <u>The friction coefficient can be calculated, if we know:</u>

- the rotational speed (n<sub>1</sub>)
- the load (F<sub>1</sub>)
- the geometry  $( \mathfrak{D} d_1 )$
- the torque, acting on the shaft (M<sub>1</sub>)

# Two-disc machines (from industry): (PLINT Tribology Inc.)





Infrared sensors for measuring the contact temperature Sealed equipment, lubrication applicable





## double-side driving

# single driving (one side)

## **Design conditions:**

- Load = 2000 [N]
- Specimen diameter = 50 [mm]
- max. coeff. of friction = 0,8
- max. width of specimen = 50 [mm]
- max. revolution = 1000 [1/min]
- max. slip = 10 [%]

## **Design aims:**

- To use standardized elements (nuts, screws, bearings, bearing-housing, Seeger-rings,...)
- To use Alu profiles for the rack
- Easy to change the specimens
- To use Different specimen are being measured
- To be able to measure and set the revolution
- To be able to measure the frictional moment
- To be able to measure the contact temp
- Easy to mount

# The designed machine:



# **Two separated parts:**

I. Moving unit with the tilting arm





II. Stationary unit fasten to the base

# Parts of moving unit:

## Speciement clamping



## Mounting from one side

- Cones are fasten the shaft against axial moving
- First the specimen mounting and after that the specimen-shaft
- Fixing by non-circular profile

### Parts of tilting arm:



## Timing belt:



Type: AT 10 Width: 25 mm Length: 1120 mm



#### Bearing units:



## MISUMI Group Inc.

#### Type:

- 2 db BGCRB (6006\_2RS)
- 2 db SBACR (6007\_2RS)
- 2 db SBACY (NA4907\_2RS)
- 1 db NA4901\_2RS needle-

roller bearing















3 phase assinchronous motor :

#### **General Purpose Cast Iron Motors**

Totally enclosed squirrel cage three phase low voltage motors, Sizes 71 - 355, 0.25 to 250 kW Type: M2QA\_90S4A P = 1,1 kW n = 1400 1/min







## **Coupling:**

M = 15 Nm ≌d1 = 24 mm ≌d2 = 25 mm







#### Torque meter:

Type: RADEX\_NC\_22/20 Max. measuring range: 20 Nm Working temp. range: 0..55 +C

- Integrated revolution measuring
- Minimized internal power loss
- High measuring frequency
- Widely applicable

# Parts of loading unit:



### Load cell:





Type: SSB\_AJ\_250 Range: 0...2500 N Working temp. range: -55..90  $\oplus$  C Typicals:

- Sealed
- Temperature compensated
- Accuracy < 0,01 %
- Small geometry
- Easily connected

## Helical spring



DIN 2098 standardized: Dimensions: DIN 2098 – 5x25x80

## **Comparing the first and the final design:**

- Welded ring
- Y bearings
- Load applied at the end of the arm
- Stiffening rib

- Bolted joint connection
- Deep groove ball bearings
- Loading unit is better
- No stiffening rib
- Belt tension roller applied







# FE Analysis: Von Mises Stress



# Angular distorsion (round axis Z):



# **Calculation:**

#### 6205 Bearing 25 d, mm 52 D, mm d<sub>m</sub>, mm 38.5 1000 n, r/min 294 v, mm²/s F<sub>r</sub>, N 2000 F<sub>a</sub>, N 0 $\mu_{\text{EHL}}$ 0.05 💿 Grease Oil spot O Oil bath 🔘 Oil jet H, mm K<sub>rs</sub> 6e-8 Calculate W<sub>e</sub>, W/°C 5 Calculate

Frictional moment - power loss

#### **Rolling frictional moment** $\Phi_{ish}\Phi_{rs}M_{rr}$ , Nmm 39.7 Sliding frictional moment M<sub>sP</sub> Nmm 19.8 Frictional moment of seals M<sub>seal</sub>, Nmm 0 Frictional moment of drag losses M<sub>drag</sub>, Nmm 0 Total frictional moment 59.6 M, Nmm Power loss $N_{R}, W$ 6.24 Starting torque M<sub>start</sub>, Nmm 59.5 Extra info Temperature increase 1.25 ΔT, °C